

Abstract

eTPU is a state-of-the-art timing co-processor unit that
aims to relief I/O processing in new advanced
microcontroller units. It has characteristics of both a
peripheral and a processor, which are tightly integrated,
requiring a verification strategy and testbench that covers
equally well both of these views. This paper discusses
several aspects of the functional verification effort based
around signal-level cycle accurate behavioral model
directed self-checking and random patterns, and how each
component contributed to the overall results
Index Terms— eTPU, VC Verification, timing co-processor,
functional verification, simulation, testbench

1. Introduction

he enhanced Time Processing Unit (eTPU) is an
intelligent, semi-autonomous co-processor designed for

I/O processing with timing control. Operating in parallel
with the main microcontroller CPU, the eTPU processes
instructions and real-time input events, performs output
waveform generation, and accesses shared data without
CPU intervention. Consequently, for each timed I/O event,
the CPU setup and service times are minimized or
eliminated. The I/O events are first processed by a
configurable hardware logic named a Channel. There is one
channel for each I/O signal pair. A dedicated, Harvard
architecture CPU (hereafter called microengine) processes
requests that come from the Channels.
The microengine serves up to 32 channels, which also share
a pair of time-base counters used for input event timing and
output timed event generation (see block diagram in Fig 1).
The module formed by a microengine, the timebases,
associated channel and support logic set is called an engine.

The eTPU works much like a typical real-time system:
it runs microengine code from instruction memory to
handle specific events while accessing data memory for
parameters and application data. Events may originate from
I/O Channels
(due to pin transitions and/or time base matches), CPU
requests or inter-channel requests. Events that call for local
eTPU processing activate the microengine by issuing a

���
� FreescaleTM

 is a trademark of Freescale Semiconductor, Inc.
_

_ OpenVeraTM
 is a trademark of Synopsys, Inc.

TestbuilderTM
 is a trademark of Cadence Design Systems, Inc.

Service Request. Some real-time system functionalities, like
task scheduling and context switch, are implemented in
hardware for performance sake.

The eTPU instruction set has VLIW (Very Large
Instruction Width) characteristics: an instruction may
contain several active fields that command parallel
operations. Many operation fields directly command the
channel logic. Likewise, channel events may interfere with
the program flow. The timed interaction between channel
logic and the microengine is an important aspect to be
considered in verification.

eTPU also provides Nexus class 3 [10] hardware debug
support that posed an interesting verification challenge by
itself but it is out of the scope of this work.

The eTPU selected as the DUV (device under
verification) is a dual-engine system, which is composed of
two engines sharing code and data memories.

 Fig. 1 eTPU Block Diagram

VC (virtual component) verification is the process of

determining whether a VC fulfills a specification (spec for
short) of its behavior [8]. The scope of this work is to
describe the eTPU functional verification effort and its
results. Due to the special nature of the eTPU that has
characteristics both of a timer and processor, it required a
hybrid verification strategy that partially incorporated
methodologies like automated test generation [2] and
transaction-based fully self-checking testbenches [3].

T

Functional Verification of a Timing Co-Processor: A Case Study

Celso Brites, Cristiano Rodrigues
Brazil Semiconductor Technology Center (BSTC) - Freescale Semiconductor Inc.

{Celso.Brites, Cristiano.Rodrigues}@freescale.com

2. VC Verification

2.1. Verification Strategy

eTPU complexity is concentrated in two main areas
which drove the verification strategy:

• The microinstruction set, with over 70 different
operation fields distributed in 26 instruction formats.
The level of orthogonality between those operations is
relatively low, so that many instruction field value
combinations configure exceptional behaviors.

• The channel logic, including the angle counters logic.
Each channel can be chosen to work in either one of 13
different modes. Each of the Channel Modes configures
the channel logic to respond differently to a series of
input events, and to generate output signal actions.
Moreover, the two complexity factors above are

combined as the channel logic behavior is affected by
microinstruction intervention. Debugging support adds yet
another factor to the overall system complexity. In order to
cope with these challenges the eTPU verification effort
followed a well known strategy [4] developed around a
Response Checker and a functional model coded in C++
(Conformance Model or simply CModel). The eTPU
CModel is cycle-accurate, being compared at each clock
cycle with the DUT RTL (Register Transfer Level) or gate-
level descriptions by a signal level Response Checker (RC).
Both directed and random stimuli were created to be
applied simultaneously to the CModel and DUT. Directed
patterns were used to test all the basic functionality
described in the eTPU spec. They target:

• Configuration register values
• Each individual microinstruction operation field, with

all possible values, as well as exceptional (non-
orthogonal) combinations between them.

• Each channel mode, with the event sequence responses
described in the spec, not taking into account the
microcode intervention into channel logic state between
events.
Random patterns were used to verify the intended

orthogonality between unrelated features, configuration
register fields, microinstruction operation fields, channels,
etc. Random patterns were also used to stimulate the
channel logic with event sequences not directly mentioned
in the spec, as well as microcode interventions into the
channel logic state. Most patterns use only one channel to
run. These patterns were coded with parameterized Engine
and Channel numbers,
so they can be run on any channel. The random patterns
were written to provide stimulus only. The checking part
was implemented by the RC, comparing the DUT state with
the CModel‘s at each clock cycle.

Complementing the strategy above, Assertion Based
Verification (ABV) was used in selected functional
modules (namely the Arbiter and the Scheduler) to
implement internal monitors and functional coverage
points. The assertions were written in OVA (Open Vera
Assertions) [7] and checked every cycle against the RTL in
all simulation runs.

2.2. Verification Methodology

The methodology chosen to implement the verification
strategy is outlined below:

− Extract testable sentences from the specification
(spec tagging);

− Develop self-checking, directed patterns based on
testable sentences;

− Extract corner-cases from directed patterns reviews
and brainstorms with design team;

− Develop a conformance model and response
checker.

− Develop random patterns to test corner-cases and
orthogonality;

− Develop assertions for critical functions;
− Collect and evaluate RTL code coverage and

assertion functional coverage;
− Enhance or augment pattern suite until coverage

goals are fulfilled.

2.3. Verification Strategy Implementation

CModel and RC description

The eTPU CModel is a cycle-accurate, full-featured
functional model. Cycle-accuracy was needed because
eTPU functionality is strictly related to the timing of
channel events processing.

Fig.2 – eTPU Testbench Structure

The model has a hardware-like interface, consisting

basically of the interface signals and buses of the eTPU
itself. An API provides the call-based interface to the

stimulus. This API is the same used in all testbenches (RTL
standalone, RTL + RC), allowing a pattern to be run
without modification on any of them. The testbench
structure is shown in fig. 2.

The eTPU RC acts at the same time as a driver to the
eTPU CModel and as a monitor for the DUT (RTL or gate-
level). It also advances the CModel's simulation clock. At
each clock cycle, the RC collects the values of a set of
signals from the DUT, in either a black-box (where only
external output signals are checked) or a grey-box mode
(where internal signals, registers, flags and FSM states are
also checked). Mismatches are accused, ultimately causing
the simulation to fail. The eTPU RC also takes care of
handling the implementation differences between the
CModel and the DUT, converting CModel signals to their
DUT equivalents when necessary. For instance, the
microengine state machines are different (albeit
functionally equivalent) in the CModel and the RTL. The
Response Checker creates an internal state register
equivalent to the RTL one based on the CModel
microengine state and other signals. The comparison is then
made, each cycle, between this internal state register and
the RTL one.

The CModel and RC were built upon a custom C++
framework. The framework uses a 4-level logic scheme
where signals can assume the values 0 (logic zero), 1 (logic
one), X (undetermined) and “don’t care”. The “don’t care”
value was an important feature to make the RC signal
comparison simple and ultimately viable: the overloaded
‘==’ C++ operator returns true when a signal with “don’t
care” value is compared to any other value. The CModel
assigns “don’t care” to any net or bus when their value is
not significant from the functional point of view, usually
when their qualifier control signal is not active. For
instance, when a “read enable” signal is not valid, the read
data bus is assigned a “don’t care”. Therefore, a direct
comparison of this bus with its equivalent in the RTL can
be made at all times regardless of the “read enable” control
signal, avoiding any false mismatches. This greatly
simplified the development and maintenance of the
Response Checker.

Verification Patterns Development

Directed self-checking patterns were specified with the
process known as "Spec-Tagging" [9], which consists in
associating each functional sentence in the spec to a
directed pattern that covers a specific functionality. A tool
automatically generates a text file for each pattern and lists
all functional statements associated with it (features tested)
on a standard header. The pattern header also contains a
section to document the strategy to cover the function as
well as the expected DUT response. The strategy has
enough detail to drive coding, to document the pattern
objectives and to assist on pattern debug. All pattern
headers were formally reviewed and corrections were made
to the spec-tagging and strategies as necessary.

Patterns were then coded in C++ using a transaction-
level API following the rules and guidelines in the
Semiconductor Reuse Standards - SRS [1]. Patterns were

manually debugged, meaning that stimulus at the
transaction level were checked for their correct behavior.

Microcode for the eTPU itself was coded in simplified
eTPU assembly language, which was developed to set
directly all possibly fields in eTPU microinstructions,
providing a very low level coding scheme suitable for
automatic code generation. PHP [5] was used as a code
generation language for both directed and random patterns,
mainly in repetitive/random coding structures.

2.4. Verification Effort

The testbench evolved as the CModel, patterns and
Response checker were developed. Table 1 relates pattern
groups with the testbenches where they were run. The
verification effort progressed through pattern/testbench
combinations numbered I to V, as shown in Table 1.

Testbench Cmodel RTL RC
Directed Self-Check Patterns I II III
Random Patterns used for pattern

debug only
IV, V

Table 1 - Testbenches

The first activity was the development of the CModel,

delivered as a conformance model to Ashware Inc, which
used it to check its own eTPU simulator as part of an eTPU
IDE suite. Bug reports were exchanged during the early
stages of both model’s development.

When the first version of the CModel was released, the
verification effort started with spec-tagging, after which a
set of 107 directed patterns were listed to cover each
testable line in the spec. The coding and debugging of these
patterns used a CModel only testbench (I). CModel errors
were also found and fixed. Many specification errors and
omissions were uncovered during CModel development and
debugging. When the directed pattern suite was fully
debugged on the CModel, a functional version of the RTL
became available, so the pattern debug started on an RTL
standalone testbench (II). Most of the reported errors
corresponded to real bugs in RTL, only a few being related
to pattern coding or CModel. This first set of directed
patterns was used as a basis for a pattern regression to be
run regularly upon new RTL releases, uncovering new bugs
introduced or uncovered by other bugs fixes. The Response
Checker became available and started running with directed
patterns (III), so all internal signals were being compared in
RTL and CModel. This step increased the observability
with exactly the same stimuli in the previous steps,
uncovering mismatches between RTL and CModel that can
be classified in 4 categories:

1. Spec ambiguities or just different interpretations
from RTL or CModel designers;

2. Implementation differences on functional details
not addressed by the specification, not considered
bugs on either the RTL or the CModel. Usually the
CModel was modified to adjust to the RTL
behavior.

3. RTL bugs, not caught by the directed patterns.

4. CModel bugs not caught by the directed patterns.
The following step was random pattern development.

These are stimulus only (not self-checking), so a testbench
with the RC was necessary to uncover bugs. A
brainstorming meeting was held with both design and
verification teams in order to find corner case scenarios,
situations not yet exercised which could be critical, such as
channel action sequences not explicitly described in the
spec, or microcode intervention simultaneous with channel
events. This resulted in 17 high-level test descriptions of
constrained random patterns to be developed. This new set
of patterns (IV), uncovered a new wave of mismatches
between RTL and CModel, included in the same categories
above.

The final step was to simulate eTPU together with the
Nexus debug support block (V). This module had already
been verified in standalone mode with a very similar
simulation environment, also using its own CModel and
Response Checker, but with random stimulus only. The
challenge was to completely verify the integration interface,
since the two blocks were going to be delivered together,
wrapped into a single bigger block. A new set of stimulus-
only patterns was developed, mixing directed (not self-
checking) and random patterns that uncovered a number of
interface issues.

Assertions were introduced to check some specific
features mainly related to scheduler and they were used to
tune some constrains to cover situations not exercised.

3. Results

After all the verification effort reported here, the VC
containing both the eTPU and the Nexus was delivered to
be implemented in the MPC5554 microcontroller and the
MCF523X family of microcontrollers. So far, a single bug
not caught during verification was found on silicon.

Fig. 3 – Bugs Found x Working Week

By analyzing the bug rate during each step of the

verification effort - see fig. 3 -, it can be seen that a new

bug rate peak appeared at the beginning of each new phase:
directed patterns on RTL standalone (II), directed patterns
on RTL with Response Checker (III), random patterns with
Response Checker (IV) and debug interface patterns (V). It
is interesting to note that the bug rate rose when the
response checker was introduced with directed patterns
(III). Around 25% of all bugs caught when running directed
self-checking patterns were reported by the Response
Checker, not by the pattern checking itself. It shows clearly
how the Response Checker improved the testbench in terms
of observability, when compared to the same set of patterns
run on RTL only, having the same controllability.

4. Possible Improvements

The testbench currently does not allow two patterns to
run in parallel in the C side, stressing ETPU behavior in a
system situation closer to real life. This limitation is
minimized by the parallelism of the eTPU itself, allowing
microcode threads to run in a time-sharing basis or in actual
parallelism on a dual engine system.

Some functional aspects of the eTPU seem particularly
suitable to formal verification: the arbiter, the scheduler and
the channel logic. Assertions were already developed for
the first two.

5. Conclusions

The early building of a conformance model was a

valuable activity in itself, making the verification team to
have an in-depth knowledge of the specification, also
helping to identify omissions and obscure points in the
spec. Early model delivery, combined with a single
stimulus API used for all testbenches, allowed the
verification team to start writing and debugging patterns
independently of the design team.

The cycle-accurate nature of the conformance model
allowed RC implementation at the signal level, making it
relatively simple and quick to deploy. A near-optimum
level of observability was achieved by comparing the model
and RTL inputs, outputs, internal registers and states at
each clock cycle.

Timing critical patterns previously written and
debugged on the model could be run on the RTL with little
or no hanges. On the down side, timing mismatches
between the model and the RTL were frequent, almost
always in cases were the particular implementation was not
relevant from the functional point of view, demanding a
considerable workload. The design and verification team
should inform each other and reach an early agreement
whenever the specification gives margin to diverging
implementations. These implementation details did not
have necessarily to be back annotated into the specification,
but could for instance be recorded and followed up in a bug
tracking system. Working very closely with the design team
was very important for an effective debug process.

Constrained random patterns proved to be an
outstanding resource to find corner case bugs. A relatively
small set of random patterns caught a large amount of bugs.
A numeric comparison of the results/effort ratio between
random and directed self-checking patterns is difficult,
considering the workload taken to develop the model and
the conformance testbench, and that directed self-checking
patterns were part of their debug effort. However, it became
very clear that random patterns exercised a large number of
cases not covered by the much larger directed pattern set.

PHP usage for automatic eTPU assembly code
generation, both for directed and random patterns, allied to
the power and flexibility of the language has greatly
enhanced the coding productivity.

A stimulus API was defined early on in the project and,
although evolving and incorporating new required calls,
was consistently and exclusively used along the project in
all patterns, directed or random. This allowed the patterns
to run unmodified in all simulation testbenches, and it also
facilitated porting simulation patterns to run on the
MPC5554 evaluation board.

A structured testbench with a well defined-class
hierarchy also contributed to the reuse of patterns across
testbenches. The three-layer API, however, added to the
maintenance effort. Testbuilder [6] was used only at the
lower (signal wiggling) layer to avoid tool limitations.

OVA assertions were used to improve the functional
coverage for some higher risk sub-blocks. Functional
coverage assertions identified uncovered cases that
demanded adjustments in the random stimuli constraints.
The benefit of property checking assertions was less clear
because it started late in the flow and it overlapped with the
conformance checking by the eTPU CModel. All bugs
reported by OVA were also reported by the RC.

Acknowledgment
The authors would like to thank the eTPU verification

and design teams at Freescale’ s Brazil Semiconductor
Technology Center (BSTC), who made this work possible;
César Dueñas, for his valuable contributions; Mike
Pauwels, Jeff Loeliger and Richard Soja from the
Freescale’ s TECD application teams in Oak Hill, TX and
East Kilbride, Scotland; and Andrew Klumpp at Ashware
Inc.

References
[1]Semiconductors Reuse Standards – http://www.freescale.com –

search for SRS
[2]Baray F, Conognet P., Diaz D. and Michel H., “ Validation of

functional processor descriptions by test generation”
[3]Zhang E. and Yogev, E., “ Functional Verification with

Completely Self-Checking Tests” , Verilog HDL Conference,
1997., IEEE International , 31 March-2 April 1997

[4]Monaco, J.; Holloway, D.; Raina, R., “ Functional verification
methodology for the PowerPC 604 microprocessor” , Design
Automation Conference Proceedings 1996, 33rd , 3-7 June
1996

[5]PHP – http://www.php.net

[6]Testbuilder – http://www.testbuilder.net
[7] Synopsys, “ OpenVeraTM Language Reference Manual:

Assertions, Version 1.4” , Synopsys.
[8] VSIA, “ Taxonomy of Functional Verification For Virtual

Component Development and Integration, Version 1.2”
[9]Encinas Jr. W.S, Duenas M. C.A, “ Functional Verification in 8-

bit Microcontrollers: A Case Study” , Microelectronic
Technology and Device, 2001, Symposium on, Brazilian
Microelectronics Society, 2001.

[10] Nexus 5001 Forum – http://www.nexus5001.org

