
  
Abstract 

 
eTPU is a state-of-the-art timing co-processor unit that 
aims to relief I/O processing in new advanced 
microcontroller units. It has characteristics of both a 
peripheral and a processor, which are tightly integrated, 
requiring a verification strategy and testbench that covers 
equally well both of these views. This paper discusses 
several aspects of the functional verification effort based 
around signal-level cycle accurate behavioral model 
directed self-checking and random patterns, and how each 
component contributed to the overall results 
Index Terms— eTPU, VC Verification, timing co-processor, 
functional verification, simulation, testbench 
  

1. Introduction 
 

he enhanced Time Processing Unit (eTPU) is an 
intelligent, semi-autonomous co-processor designed for 

I/O processing with timing control. Operating in parallel 
with the main microcontroller CPU, the eTPU processes 
instructions and real-time input events, performs output 
waveform generation, and accesses shared data without 
CPU intervention. Consequently, for each timed I/O event, 
the CPU setup and service times are minimized or 
eliminated. The I/O events are first processed by a 
configurable hardware logic named a Channel. There is one 
channel for each I/O signal pair. A dedicated, Harvard 
architecture CPU (hereafter called microengine) processes 
requests that come from the Channels. 
The microengine serves up to 32 channels, which also share 
a pair of time-base counters used for input event timing and 
output timed event generation (see block diagram in Fig 1). 
The module formed by a microengine, the timebases, 
associated channel and support logic set is called an engine.  

The eTPU works much like a typical real-time system: 
it runs microengine code from instruction memory to 
handle specific events while accessing data memory for 
parameters and application data. Events may originate from 
I/O Channels 
(due to pin transitions and/or time base matches), CPU 
requests or inter-channel requests. Events that call for local 
eTPU processing activate the microengine by issuing a 
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Service Request. Some real-time system functionalities, like 
task scheduling and context switch, are implemented in 
hardware for performance sake. 

The eTPU instruction set has VLIW (Very Large 
Instruction Width) characteristics: an instruction may 
contain several active fields that command parallel 
operations. Many operation fields directly command the 
channel logic. Likewise, channel events may interfere with 
the program flow. The timed interaction between channel 
logic and the microengine is an important aspect to be 
considered in verification. 

eTPU also provides Nexus class 3 [10] hardware debug 
support that posed an interesting verification challenge by 
itself but it is out of the scope of this work. 

The eTPU selected as the DUV (device under 
verification) is a dual-engine system, which is composed of 
two engines sharing code and data memories. 
 

 
 Fig. 1 eTPU Block Diagram 

 
VC (virtual component) verification is the process of 

determining whether a VC fulfills a specification (spec for 
short) of its behavior [8]. The scope of this work is to 
describe the eTPU functional verification effort and its 
results. Due to the special nature of the eTPU that has 
characteristics both of a timer and processor, it required a 
hybrid verification strategy that partially incorporated 
methodologies like automated test generation [2] and 
transaction-based fully self-checking testbenches [3]. 
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2. VC Verification 

2.1. Verification Strategy 
 

eTPU complexity is concentrated in two main areas 
which drove the verification strategy:  

• The microinstruction set, with over 70 different 
operation fields distributed in 26 instruction formats. 
The level of orthogonality between those operations is 
relatively low, so that many instruction field value 
combinations configure exceptional behaviors. 

• The channel logic, including the angle counters logic. 
Each channel can be chosen to work in either one of 13 
different modes. Each of the Channel Modes configures 
the channel logic to respond differently to a series of 
input events, and to generate output signal actions. 
Moreover, the two complexity factors above are 

combined as the channel logic behavior is affected by 
microinstruction intervention. Debugging support adds yet 
another factor to the overall system complexity. In order to 
cope with these challenges the eTPU verification effort 
followed a well known strategy [4] developed around a 
Response Checker and a functional model coded in C++ 
(Conformance Model or simply CModel). The eTPU 
CModel is cycle-accurate, being compared at each clock 
cycle with the DUT RTL (Register Transfer Level) or gate-
level descriptions by a signal level Response Checker (RC). 
Both directed and random stimuli were created to be 
applied simultaneously to the CModel and DUT. Directed 
patterns were used to test all the basic functionality 
described in the eTPU spec. They target: 

• Configuration register values 
• Each individual microinstruction operation field, with 

all possible values, as well as exceptional (non-
orthogonal) combinations between them.  

• Each channel mode, with the event sequence responses 
described in the spec, not taking into account the 
microcode intervention into channel logic state between 
events.  
Random patterns were used to verify the intended 

orthogonality between unrelated features, configuration 
register fields, microinstruction operation fields, channels, 
etc. Random patterns were also used to stimulate the 
channel logic with event sequences not directly mentioned 
in the spec, as well as microcode interventions into the 
channel logic state. Most patterns use only one channel to 
run. These patterns were coded with parameterized Engine 
and Channel numbers, 
so they can be run on any channel. The random patterns 
were written to provide stimulus only. The checking part 
was implemented by the RC, comparing the DUT state with 
the CModel‘s at each clock cycle. 

Complementing the strategy above, Assertion Based 
Verification (ABV) was used in selected functional 
modules (namely the Arbiter and the Scheduler) to 
implement internal monitors and functional coverage 
points. The assertions were written in OVA (Open Vera 
Assertions) [7] and checked every cycle against the RTL in 
all simulation runs. 

 

2.2. Verification Methodology 

The methodology chosen to implement the verification 
strategy is outlined below: 

− Extract testable sentences from the specification 
(spec tagging); 

− Develop self-checking, directed patterns based on 
testable sentences; 

− Extract corner-cases from directed patterns reviews 
and brainstorms with design team; 

− Develop a conformance model and response 
checker. 

− Develop random patterns to test corner-cases and 
orthogonality; 

− Develop assertions for critical functions; 
− Collect and evaluate RTL code coverage and 

assertion functional coverage; 
− Enhance or augment pattern suite until coverage 

goals are fulfilled. 

2.3. Verification Strategy Implementation 
 
CModel and RC description 

The eTPU CModel is a cycle-accurate, full-featured 
functional model. Cycle-accuracy was needed because 
eTPU functionality is strictly related to the timing of 
channel events processing. 

 

 
Fig.2 – eTPU Testbench Structure 

 
The model has a hardware-like interface, consisting 

basically of the interface signals and buses of the eTPU 
itself. An API provides the call-based interface to the 



 
 

 

stimulus. This API is the same used in all testbenches (RTL 
standalone, RTL + RC), allowing a pattern to be run 
without modification on any of them. The testbench 
structure is shown in fig. 2. 

The eTPU RC acts at the same time as a driver to the 
eTPU CModel and as a monitor for the DUT (RTL or gate-
level). It also advances the CModel's simulation clock. At 
each clock cycle, the RC collects the values of a set of 
signals from the DUT, in either a black-box (where only 
external output signals are checked) or a grey-box mode 
(where internal signals, registers, flags and FSM states are 
also checked). Mismatches are accused, ultimately causing 
the simulation to fail. The eTPU RC also takes care of 
handling the implementation differences between the 
CModel and the DUT, converting CModel signals to their 
DUT equivalents when necessary. For instance, the 
microengine state machines are different (albeit 
functionally equivalent) in the CModel and the RTL. The 
Response Checker creates an internal state register 
equivalent to the RTL one based on the CModel 
microengine state and other signals. The comparison is then 
made, each cycle, between this internal state register and 
the RTL one. 

The CModel and RC were built upon a custom C++ 
framework. The framework uses a 4-level logic scheme 
where signals can assume the values 0 (logic zero), 1 (logic 
one), X (undetermined) and “don’t care”. The “don’t care” 
value was an important feature to make the RC signal 
comparison simple  and ultimately viable: the overloaded 
‘==’ C++ operator returns true when a signal with “don’t 
care” value is compared to any other value. The CModel 
assigns “don’t care” to any net or bus when their value is 
not significant from the functional point of view, usually 
when their qualifier control signal is not active. For 
instance, when a “read enable” signal is not valid, the read 
data bus is assigned a “don’t care”. Therefore, a direct 
comparison of this bus with its equivalent in the RTL can 
be made at all times regardless of the “read enable” control 
signal, avoiding any false mismatches. This greatly 
simplified the development and maintenance of the 
Response Checker. 

 
Verification Patterns Development 

Directed self-checking patterns were specified with the 
process known as "Spec-Tagging" [9], which consists in 
associating each functional sentence in the spec to a 
directed pattern that covers a specific functionality. A tool 
automatically generates a text file for each pattern and lists 
all functional statements associated with it (features tested) 
on a standard header. The pattern header also contains a 
section to document the strategy to cover the function as 
well as the expected DUT response. The strategy has 
enough detail to drive coding, to document the pattern 
objectives and to assist on pattern debug. All pattern 
headers were formally reviewed and corrections were made 
to the spec-tagging and strategies as necessary. 

Patterns were then coded in C++ using a transaction-
level API following the rules and guidelines in the 
Semiconductor Reuse Standards - SRS [1]. Patterns were 

manually debugged, meaning that stimulus at the 
transaction level were checked for their correct behavior. 

Microcode for the eTPU itself was coded in simplified 
eTPU assembly language, which was developed to set 
directly all possibly fields in eTPU microinstructions, 
providing a very low level coding scheme suitable for 
automatic code generation. PHP [5] was used as a code 
generation language for both directed and random patterns, 
mainly in repetitive/random coding structures. 

 
2.4. Verification Effort 
 

The testbench evolved as the CModel, patterns and 
Response checker were developed. Table 1 relates pattern 
groups with the testbenches where they were run. The 
verification effort progressed through pattern/testbench 
combinations numbered I to V, as shown in Table 1. 

 
Testbench Cmodel RTL RC 
Directed Self-Check Patterns I II III 
Random Patterns used for pattern  

debug  only 
IV, V 

Table 1 - Testbenches 
 
The first activity was the development of the CModel, 

delivered as a conformance model to Ashware Inc, which 
used it to check its own eTPU simulator as part of an eTPU 
IDE suite. Bug reports were exchanged during the early 
stages of both model’s development. 

When the first version of the CModel was released, the 
verification effort started with spec-tagging, after which a 
set of 107 directed patterns were listed to cover each 
testable line in the spec. The coding and debugging of these 
patterns used a CModel only testbench (I). CModel errors 
were also found and fixed. Many specification errors and 
omissions were uncovered during CModel development and 
debugging. When the directed pattern suite was fully 
debugged on the CModel, a functional version of the RTL 
became available, so the pattern debug started on an RTL 
standalone testbench (II). Most of the reported errors 
corresponded to real bugs in RTL, only a few being related 
to pattern coding or CModel. This first set of directed 
patterns was used as a basis for a pattern regression to be 
run regularly upon new RTL releases, uncovering new bugs 
introduced or uncovered by other bugs fixes. The Response 
Checker became available and started running with directed 
patterns (III), so all internal signals were being compared in 
RTL and CModel. This step increased the observability 
with exactly the same stimuli in the previous steps, 
uncovering mismatches between RTL and CModel that can 
be classified in 4 categories: 

1. Spec ambiguities or just different interpretations 
from RTL or CModel designers; 

2. Implementation differences on functional details 
not addressed by the specification, not considered 
bugs on either the RTL or the CModel. Usually the 
CModel was modified to adjust to the RTL 
behavior. 

3. RTL bugs, not caught by the directed patterns. 



 
 

 

4. CModel bugs not caught by the directed patterns. 
The following step was random pattern development.  

These are stimulus only (not self-checking), so a testbench 
with the RC was necessary to uncover bugs. A 
brainstorming meeting was held with both design and 
verification teams in order to find corner case scenarios, 
situations not yet exercised which could be critical, such as 
channel action sequences not explicitly described in the 
spec, or microcode intervention simultaneous with channel 
events. This resulted in 17  high-level test descriptions of 
constrained random patterns to be developed. This new set 
of patterns (IV), uncovered a new wave of mismatches 
between RTL and CModel, included in the same categories 
above. 

The final step was to simulate eTPU together with the 
Nexus debug support block (V). This module had already 
been verified in standalone mode with a very similar 
simulation environment, also using its own CModel and 
Response Checker, but with random stimulus only. The 
challenge was to completely verify the integration interface, 
since the two blocks were going to be delivered together, 
wrapped into a single bigger block. A new set of stimulus-
only patterns was developed, mixing directed (not self-
checking) and random patterns that uncovered a number of 
interface issues. 

Assertions were introduced to check some specific 
features mainly related to scheduler and they were used to 
tune some constrains to cover situations not exercised. 
 

3. Results 
 

After all the verification effort reported here, the VC 
containing both the eTPU and the Nexus was delivered to 
be implemented in the MPC5554 microcontroller and the 
MCF523X family of microcontrollers. So far, a single bug 
not caught during verification was found on silicon. 
 

 
Fig. 3 – Bugs Found x Working Week 

 
By analyzing the bug rate during each step of the 

verification effort  - see fig. 3 -, it can be seen that a new 

bug rate peak appeared at the beginning of each new phase: 
directed patterns on RTL standalone (II), directed patterns 
on RTL with Response Checker (III), random patterns with 
Response Checker (IV) and debug interface patterns (V). It 
is interesting to note that the bug rate rose when the 
response checker was introduced with directed patterns 
(III). Around 25% of all bugs caught when running directed 
self-checking patterns were reported by the Response 
Checker, not by the pattern checking itself. It shows clearly 
how the Response Checker improved the testbench in terms 
of observability, when compared to the same set of patterns 
run on RTL only, having the same controllability. 
 

4. Possible Improvements 
 

The testbench currently does not allow two patterns to 
run in parallel in the C side, stressing ETPU behavior in a 
system situation closer to real life. This limitation is 
minimized by the parallelism of the eTPU itself, allowing 
microcode threads to run in a time-sharing basis or in actual 
parallelism on a dual engine system. 

Some functional aspects of the eTPU seem particularly 
suitable to formal verification: the arbiter, the scheduler and 
the channel logic. Assertions were already developed for 
the first two. 

 

5. Conclusions 
 
The early building of a conformance model was a 

valuable activity in itself, making the verification team to 
have an in-depth knowledge of the specification, also 
helping to identify omissions and obscure points in the 
spec. Early model delivery, combined with a single 
stimulus API used for all testbenches, allowed the 
verification team to start writing and debugging patterns 
independently of the design team. 

The cycle-accurate nature of the conformance model 
allowed RC implementation at the signal level, making it 
relatively simple and quick to deploy. A near-optimum 
level of observability was achieved by comparing the model 
and RTL inputs, outputs, internal registers and states at 
each clock cycle. 

Timing critical patterns previously written and 
debugged on the model could be run on the RTL with little 
or no hanges. On the down side, timing mismatches 
between the model and the RTL were frequent, almost 
always in cases were the particular implementation was not 
relevant from the functional point of view, demanding a 
considerable workload. The design and verification team 
should inform each other and reach an early agreement 
whenever the specification gives margin to diverging 
implementations. These implementation details did not 
have necessarily to be back annotated into the specification, 
but could for instance be recorded and followed up in a bug 
tracking system. Working very closely with the design team 
was very important for an effective debug process. 



 
 

 

Constrained random patterns proved to be an 
outstanding resource to find corner case bugs. A relatively 
small set of random patterns caught a large amount of bugs. 
A numeric comparison of the results/effort ratio between 
random and directed self-checking patterns is difficult, 
considering the workload taken to develop the model and 
the conformance testbench, and that directed self-checking 
patterns were part of their debug effort. However, it became 
very clear that random patterns exercised a large number of 
cases not covered by the much larger directed pattern set. 

PHP usage for automatic eTPU assembly code 
generation, both for directed and random patterns, allied to 
the power and flexibility of the language has greatly 
enhanced the coding productivity. 

A stimulus API was defined early on in the project and, 
although evolving and incorporating new required calls, 
was consistently and exclusively used along the project in 
all patterns, directed or random. This allowed the patterns 
to run unmodified in all simulation testbenches, and it also 
facilitated porting simulation patterns to run on the 
MPC5554 evaluation board. 

A structured testbench with a well defined-class 
hierarchy also contributed to the reuse of patterns across 
testbenches. The three-layer API, however, added to the 
maintenance effort. Testbuilder [6] was used only at the 
lower (signal wiggling) layer to avoid tool limitations.  

OVA assertions were used to improve the functional 
coverage for some higher risk sub-blocks. Functional 
coverage assertions identified uncovered cases that 
demanded adjustments in the random stimuli constraints. 
The benefit of property checking assertions was less clear 
because it started late in the flow and it overlapped with the 
conformance checking by the eTPU CModel. All bugs 
reported by OVA were also reported by the RC. 
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